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{ ABSTRACT

v This is the third paper in which we study iteratioms using linear

:f ? information for the solution of nonlinear equations. ImWasilhowshi-{78]

| and*{#% ye have considered the existence of globally convergent iterations
for the class of analytic functions. Here we study the complexity of such
iterations. We prove that even for the class of scalar complex polynomials
with simple zeros, any iteration using arbitrary linear informatiom has

i‘ infinite complexity. More precisely, we show that for any iteration i?:nd
any integer k, there exists a complex polynomial f with all simple zeros such

the 2rathon

that the first k approximations produced by Ado not approximate any solution
H

Y suds

of f = 0 better than a starting approximation x. This holds even if the

~

distance between \:\cp\) and the nearest solution of f = 0 is arbitrarily small. _
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1. INTRODUCTION

In this paper we continue the study of iterations using linear informa-
tion for the solution of nonlinear equations £ = 0, In Wasilkowski {78] we
have proven that no stationary iteration using linear information can be
globally convergent for the class of scalar amalytic functioms with simple
zeros. 1In Wasilkowski [79] we have exhibited nonstationary iterations which
are globally convergent for the class of analytic functions with simple zeros
even for the abstract case.

In this paper we deal with the complexity of iterations using linear
information. We prove the surprising result that any such iteration has
infinite complexity even for the class & of scalar complex polynomials with
simple zeros. To make this negative result as strong as possible we have
chosen a relatively simple class 9. Furthermore we deal with a very general
definition of information and iterationm. Nahely, any sequence of linear finite
dimensional operators is considered as possible information, and any sequence
of functionals as an iteration. We also do not specify which zero of { is
approximated, and the assumptions concerning the starting points are very weak.
Under these assumptions we prove that for any positive L, any integer k, and
any L:erution'; using linear information, there exists a complex polynomial f
having only simple zeros such that the distance between a starting approxima-
tion X, and a nearest zero o of f is no larger than L and the first k approxi-
mation produced by'; do not approximate any zero of f better than Xge Note

that L can be arbitrarily small which means that x, can be arbitrarily close

to a.
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1.2

Let S(f) denote the set of all zeros of f. By the complexity of an

iteration we mean the total cost of producing an approximation x_ where N
L

N
is the minimal index such that dist(xN,S(f)) <e dist(xo,s(f)) for a given
number €, € < 1. We do not specify exactly what we mean by the "cost",

We merely assume that the cost of the assignment operation is not zero.

Thus, the complexity of an iteration is at least proportional to N. Since we
shall show that N can be arbitrarily large for some polynomials, this proves
that for every ¢ the complexity is infinite in the class }. This is a very
strong result since even assuming (theoretically) that all operations except
assignment are free; the complexity is still infinite.

This paper also illustrates the important difference between the concepts
of global convergence and complexity. The class of all linear information
supplies enough knowledge about f to guarantee the existence of globally con-
vergent iterations but the complexity of any such iteration is infinite.

We summarize the contents of the paper. For the reader's convenience,

in Sections 2 through 5 we deal only with iterations without memory. In

Sections 2 and 3 we define information, iteration without memory, globallv

convergent iteration, and complexity of an iteration. In Section 4 we prove
two theorems which play an essential role in the proof of the main result
which is established in Section 5. 1In Section 6 we extend all results to

iterations with memory. 1In Section 7 we pose some open problems.
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2.1

2. INFORMATION AND ITERATIONS WITHOUT MEMORY

For the reader's convenience we repeat the very general definition of
information and iteration without memory introduced in Wasilkowski [79].
For simplicity, in Sections 2 through 5 we deal only with iterations without
memory. The extension to the general case is given in Sectiom 6.

Let H be the class of all complex polynomials and § be the subset of H
which consists of all polynomials having only simple zeros. Let S(f) denote
the set of all zeros of £, £ € H. Consider the solution of a nonlinear

equation
(2.1) f(x) =0, £ €3.

To solve (2.1) iteratively we must know something about f. Let

L, tHX ¢ - @ be a functional which is linear with respect to the first

argument, i.e., I.’.(c]_f1 + czfz,x) = clLi(fl’x) + chi(fz,x), i=1,2,...,n.

Then the linear information operator R, N = [LI’L

preeesly) 1H X C - ¢, is

defined as
(2.2) N(f,x) = [L1(£,21),L,(£,2)) 500050 (£,2)], ¥ €H, ¥x € a
where Z; = x and

2y 840215 Ly(£,2,),L)(£,2)) 10000l (£12 )

for some functions §j, j=2,3,...,n. Thus any z, depends on the previously

3

computed information. For brevity we shall sometimes write z, = z (f). Let

3

3

LA be the class of all such information operators.




[
.
n

Consider a sequence of linear information operators T = {'.'Ii}, ‘.‘li € 'bn .
i

Let x, be an approximation of a solution of (2.1). Suppose we construct a

0

sequence of approximations {xi} by the formula

(2.3) x = @ (xp5 N, (£,%,))

; l4n,

4 ~ i - .

! where 9, Dco < < - C are functionals, o € 5(’.’11). Then the sequence
i

9= {cpi} is called an iteration without memory using %, P € 3(%).




3.1

3. COMPLEXITY OF ITERATIONS

In this section we define the complexity of an iteration. Let

dist(x,S(f)) = inf |x-o]
o€s (£)

denote the distance between the point x and the set S(f). Let L be a positive
pumber and let @ be an iteration without memory. For any £ € J and X, such

that
(3.1)  dist(xy,S(H) <L,

consider the sequence {xi} generated by ¢. For any ¢, ¢ < 1, define

N= N(;,c,xo,f) as the minimal integer, if it exists, such that
3.2) dist(xN,S(f)) <e dist(xo,S(f)),

and N = 4+ © otherwise. The number N is determined by how many iterative
steps are necessary to reduce the starting error by e.

Let cmp(z,c,xo,f) be the total cost of computing xq satisfying (3.2).
We do not specify exactly what we mean by the "cost'. We merely assume
that the cost of the assigmment operation is not zero. Since any iterative
step performs at least one assignment operation, there exists a positive

number ¢ such that
(3.3) cm(;.t.xo»f) 2 CN(;:.sxonf)l VB:.:xoof-

In Wasilkowski [79] we showed there exist globally comvergent iterations,
ie., iterations which for any X and f satisfying (3.1) comstruct s sequence

{x 1] such tuat




(3.4) lim X, € s(D.

i—o@

(This also holds for L = +®,) Note that for any globally convergent iteration

<—p, the number N(E;,e,xo,f) is finite for any positive e, any Xgo and any fixed

f from J.

We shall show that N(E,c,x f) is unbounded for a subset of . Let

0)
(3.5) s(xo) = {f € §:dist(xy,5(f)) < Ll}.

Thus, S(XO) is the set of all polynomials f from J for which the distance
between the initial approximation Xy and the nearest zero of f is less than L.

Let

(3.6) N(»,e,x sup  N(P,€,x4,f)

N o=
MY L5708

be the minimal number of iterative steps which are necessary to reduce the

starting error by ¢ for all f from 3(:«:0). Similarly, let

(3.7) comP(?P,e,xo) = sup comp(a,e,xo,f)-
f€3(x0)

Due to (3.3),

(3.8) comv@,e,xo) 2.cN(7\5.e,x0), Va,e,xo-

It is intuitively obvious that for ¢ = 0, N(E,O,xo) = 4+« In Section 5
we prove thac for any L € (0,+ =], any iteration 'c._p using linear information
and any x, € C,

N('q?,e,xo) = 4+, ¥e € [0,1)

which, due to (3.8), implies that




i

3.3

comp(a,e,xo) =4+, ve €[0,1),

This means that the cost of reducing the starting error may be arbitrarily

large for some polynomials from Y even if Xy is very close to a solution.

g
3
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4. TWO THEOREMS

In this section we prove two theorems which play an essential role in the
proof of the main result. Although Theorem 4.1 is intuitively obvious its
proof is long and difficult, Since this theorem is basic, it would be inter-
esting to find a simpler proof.

We first define a linear operator used below. For any linear information

operator 21 = [L,,L ...,Ln], A wn’ and any x

150 we define a linear operator

0
% f eH,

(4.1 T2 = [L(8,2)),L,(8:2)),--.,L (8,2))), & €H,

where zl = xo and

4.2) =z =2 (D) = (25 L(£,2)5L,(£,2,) 500 0,L ((Frzy )

j-1

are defined by the information operator &t for the polynomial f£f. By ker 2

f

we denote the kernel of ﬂf. We first establish
Theorem 4.1

For any integer n, any linear information operator T, &t € %n’ any
integer k, any functionals L YRR € 3(T), and any starting point
X € 11, there exists a polynomial £ € S(XOJ such that
4e3) XX seenaxq £ S(E)
where X, = wi(xo; ﬂ(f,xo)), i=1,2,...,k. ]

Proof (induction with respect to n)

We first prove (4.3) for n = 1, Since 2t £ *1’ there exists a nonzero

polynomial h, h £ H, satisfying
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4,2

% .4) !R(h,xo) = 0.
Then there exists 8, B € (0,%'), such that h(x0+B) # 0. For positive o, define
fc(x) = x-xo-BH)‘h(x).

Let vy (a),yz(cr),...,yr(c) be the zeros of f‘:r where r is the degree of h. From
the theory of algebraic functions (see e.g., Wilkinson [63]) we know that
yl(cr) # x0+B and yl(c) - xo-i-B as ¢ tends to zero. It is possible to show that
the yi(o') are simple zeros and Iyi(c)l - +® as ¢ goes to zero, 1 =2 2. Thus,
for sufficiently small o, fc € 3(x0) and fo-(xo) # 0. Due to (4.4),

‘.Yt(fa,x = ‘.n(x-xo-s,xo) which means that

0)
xi = wi(xo’ﬂt(fd"xo)) = Qi(xoym(x'xo'ayxo))

does not depend on ¢, 1 = 1,2,...,k. Note that there exists a small % such

that

(4.5) [xo,xl,...,xk] n {yl(al) ,yz(crl),...,yr(cl)} = f,

Indeed, for small o we have |y (0)|> max |x1| for §= 2,3,...,r. Since
] 0sisk
yl(cr) takes infinitely many values as ¢ tends to zero, there exists % such

that y, (9,) # x;, 1= 1,2,...,k, vhich proves (4.5). Taking now f = fcl’ we
get £ € J(x,) and XgrXpaeseaXy £ S(f). This completes the proof of (4.3) for

n=1],
Suppose now by induction, that (4.3) holds for n < ng. We want to show

that (4.3) also holds for n = n_+1. On the contrary assume that there exist

0
*
% €,

* * * *
'Rn - [LI’LZ’...’LII]’




G, Sl g

*
k, Oy e € 5(ﬂn) and X, € € such that for any polynomial f € 3(x0),

XL

%
(4.6) i € 70,k] :xi(f) = mi(xo; ﬂn(f,xo)) € s(f).

Define the information operator

3 % e *
-‘n_l(fsxo) = [Ll(f’zl) st(f:zz) :C--:Ln_l(fsz )]

n=-1

s * % %* *
where z; are given by Rn. We shall construct functionals T ERRREL £z ﬂn 1)
* %

h th th t{ X,,X \{} *= *If—.* . .
such that e se XgrXpr¥XgsenerX) Iy X x, < ) = Di(xo, 'h-l(f’xo))’ contains a

*

zero of £ for any polynomial £ from 3(x0). Since ﬂn-l € Wn , this will be a
]

contradiction.

Let

A, = {f € RICW) tf(xg) = 0}

*
and let A2 be the set of all f € 3(x0) for which the functional Ln(-,zn(f)) is

* * *
linearly dependent on the functionals Ll(',zl(f)), L2(-,zz(f)),...,Ln_l(-,zn_l(f)),

i.e., f €A, iff there exist constants ¢,,C,.,...,C such that
2 1’72 n-1
n-1
* = %*
(407) Ln(.’zn(f)) = L chj(.’zj(f))'
3=

Note that ¢ depends on the values zl(f),zz(f),...,zn(f) and the functionals

%* * *
Ll’LZ""’Ln' Observe also that for f € A2 we do not have to compute Ln(f,zn(f))
since,

n-1

* ¥
LBz (0) = [ e Li(f,2,(6)

j=1
is expressed by the previously computed values,
Let

(“.8) ay-= S(XO)\(AIUAZ).
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Then for any f € A,s f(xo) # 0 and
* * * *
4.9) L (52, () £ Lin{L;(+52y(£)) Ly (+22,(£))5eee, L (EN ],
For an information operator M and £ € J, let
B(?) = {o € C:¥h €ker X, h(a) = 0}
where mf is a linear operator defined by (4.1). We need the following lemmas.

lLemma 4,1

If A, # B then for any £ € Ass

s(6) NBER_, ) # 8.

Proof
From (4.9) there exists a polynomial {, { = ((f) € H, such that

* *
Ln(C,zn(f)) = 1 and { € ker mn-l,f' Define
sa(x) = f£(x)+of(x)

for ¢ > 0. Since f has only simple zeros, then as in the proof for n = 1, we
can conclude that 2y has only simple zeros which tend to the zeros of £ and
to infinity (if the degree of £ is less than the degree of () as o goes to
zero. Thus, 8 € 3(x0) for sufficiently small ¢. Note that

L;(ga,zj(f)) - L;(f,zj(f)) for § = 1,2,...,n~1 which means zj(f) - zj(gc) for
= 1,2,...,n. Thus g_ [ A, Since x, € S(f), then x, also does not belong

to S(ga) for sufficiently small o, say o € (0,0'0). Thus 8, € A,,

Bo = 10 €(LE]:x (B = 9 (xg3 (8 0%y) €5(8), Yo € (0,0p.

ARG ARl il
it ok e i L e % e W S e i ’




%*
Let h be an arbitrary polynomial, h € ker ﬂn £ Consider
’
85,3(%) = 8, (x)+f(x)

where 8 is a sufficiently small number. Then 8 3 € Ay and
% *
mh(gc,xo) = ﬂn(gc,a,xo) which means that xi(gc’s) = xi(gc) does not depend on
8, i=1,2,...,k, and therefore
h(xio(gc)) =0, ¥ € (0,00).

*

Since h is arbitrary, this yields that S(g+cl) N B(S’ln f) is nonempty.
b}

; .
g Let h € ker % _ be a nonzero polynomial. Then there exists io = io(c) €[1,k]

x n,f

such that xi is a zero of g + o and h, o € (0,00). Since ¢ takes infinitely
0
many values, there exist distinct o, and Ty» both from (0,00), such that

*
10(01) = 10(02). Let i = 10(01) = 10(02) and X = xi(gol) = xi(gc%). Then
&

0= * * r *
= Scl(xi) f(xi) + °1°(xi)
0= *) = f *) + ’ *)
gcz(xi (%) + @, 5(x;)

* *
This means f(xi) = g(xi) = 0 and since h is arbitrary, we get

L

X

L3
€s(H) NSO NBER .

* %*
Since ker &t _ = 1in{{} 3 ker 2 g» see (4.9) and the definition of {, we
9

1,f

* * %
get x, €s() N B(‘.'tn ). Thus §(f) " B('.'?,n_1 f) is nonempty which completes
?

-1,f
the proof of Lemma 4.1. ]

For any f, f ES(xo), let r = c(f), j = j(£)y (j =1,2,...r) be indices
* * *
such that L, (-,z (*s2, (£)),e0e,L
*jl H . Jz Jz . ie
sPace lin {Ll(‘,zl(f))’Lz("zz(f)))clo, Ln'l(f))}. Let :1)C2)""Crl Ci(f) e H’

(N, 1L (-,zj (£))]} is a basis of the
r

be polynomials satisfying

i
;1




i
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4.6

1 if s = {1,
L, (C,.z, (£) =
Ig i’ ig
0 if s 4 i.
We define r
= Y ¥ (g2, (0)C
Wf < js ’ js s
and s=l
*
A, = {f €3(xp) 18w N B(Ryy, o F AL
Lemma 4.2
(1) Ayca,

(11) 1f A, # § then for any £ € A,

S N B, ; ) € S(D).

Proof

Without loss of generality we can assume that A3 is nonempty. let £ € A3
*
be arbitrary. Then hf df f-wf € ker mn_l £ and from Lemma 4.1, there exists
9
*
a €s(f) N B(!Rn_1 f)' Thus, wf(a) = f(a)-hf(a) = 0 which means that
*
S(wf) n n(mn_l’f) is nonempty. Thus, £ € A, which proves that A, < AA.
To prove (ii), let f be an arbitrary polynomial from A“. There exists
o *
a; €5(we) N B(mn_l’f). Since hg € ker ﬂn-l,f’ £(a)) = we(a)+he(a) = 0
which means that a € S(f). Thus, Lemma 4.2 is proven. [ ]
*
Note that knowing mn_l(f,xo) we can verify whether f belongs to Ai’
i = 2,4, Furthermore for any f € 3(xo) with Rn_l(f,xo) = ‘Rn_l(f,xo). f € Al

iff £ eAi, i=2,4, For i=1,2,..,k, define




% ~
o € S(wf) n B(ﬂn_l’f) if £ € A
n-1
* . W* . q* ¢ o * - \
wi(xo, 'n-l(f’xo)) gi(xo, ['n-l( ,xo), 3 chj(f,zj(f))]) if £ € A2 AA’
j=1
0 otherwise,
.

ate

- * . s %
where £ € S(XO) and ﬂn_l(f,xo) = ﬂn_L(f,xO). Thus, the functionals ¢, are well-

* *
defined and @ € @(mn_l). Furthermore

(4.10) ¥ € S(xy), Tiy € [0,k] X € s(f).

* *
Indeed, if f € A4 then, due to Lemma 4.2(ii), mi(xo,ﬂn_l(f,xo)) = o € S(f) for

any i = 1,2,...,k. If f € 3(x0)\An, then due to Lemma 4.2(i), f € A, U A, which

1 2
* * %
i . Y . W:
means that either X € S(f) or ) (xo, ﬂh_l(f,xo)) = mio(xo, ,n(f,xo)) € s(f)
* % %
for some i, € [1,k]. Since @, € (N .) and N €% , (4.10) contradicts the :
0 i n~1 n-1 g
inductive assumption. Thus, the proof of Theorem 4.1 is completed.

Theorem 4.1 says that for any linear information operator % and any finite
number of functionals PaPpseeer® € (), there exists a polynomial f € S(xo)

such that no point X, = ¢i(x0; R(f,xo)) is a zero o of f. Now we show that Xy

cannot approximate & better than Xge

Theorem 4,2

For any integer n, any linear information operator M, R = [Ll,Lz,...,Ln] € *n’

any integer k, any functionals ©5Dysen s € 3™ and any starting point X, € C,

there exists a polynomial f € S(xo) such that

min dist(x,,S(£)) = dist(xy,S(£)) # 0
1=0,1,...,k

where X, = xi(f) = @i(xo; ﬂ(f,xo)).




Proof

From Theorem 4.1, there exists a polynomial g, g € E}(xo), such that
XpeXy = Xy (8) 500X "X, (8) g5(8). Let I = {i€[Lk]):x (g) Fxy}. 1E1=p

then for £ = g we have
0 # dist(xy,S(£)) = dist(x, (£),S(£), ¥i=1,2,...,k,

which completes the proof.
Suppose therefore that I f ﬁ Consider a polynomial w of the form

n
.11) wx) = r-l(x-xi)m(x-xo) z ajxj, m = max{3n,deg g},
ier
j=0
satisfying

4.12) mg(w) =0,

Note that (4.12) is equivalent to the following system of n homogeneous linear

equations
n
%.13) Z ajLs(D(x—xi)m(x-xo)xj,zs(s)) =0 for s=1,2,,..,n.
1
=0

Since (4.13) has more unknowns than equations, there exists a non-gero polynomial

satisfying (4.11) and (4.12). Comsider the factorization of w,
P P s
0 i §
w(x) = (x-x,) I I(x-x ) (x~y,)
O ig L-J 3

for some r, r £ n, 81985000098, and Pgs Py for 1 € I vhere ’j ¢ x, for any { and j.

Due to (4.11),

(4.14) p, < o+l and P, 3n for 1 € 1.




4.9

For @ > 0 define

£ = 800 + Zw(x).

Since g has only simple zeros then for sufficiently small 'g, fc € §. Further-
more from the theory of algebraic functions, see e.g., Wilkinson [63], fcr has

zeros X, (), i €1y {0}, ;= 1,2,...,p,, satisfying
j
p,'g(x) | Yp,
-%——7-1—- o (lro(1))
Py
w (xi)

/p
df Mo Lvo())

(4.15) |xij(c)-xi|

and zeros s (), i=1,2,...,r and j = 1,2,...,s,, which tend to i when ¢ goes

i,
]
to zero. Thus, fo € 3(x0) for sufficiently small g. Since ‘Jt(fo,xo) = "Jt(g,xo)

then xi(fa) = xi(g) for i = 1,2,...,k, and therefore

1/p

dist(x, (£),S(£)) = M0 11+o(1)), for i =0 and i € I.

i
From this and (4.15) we get for 1 € I,

1-2n

dist(x,(£),5(E)) My cl/pi-l/p0 M D (ro(1))
dist(x,,S(f)) M M. ‘
0 0 0
Since Mi. are bounded away from zero, there exists oo,oo > 0, such that

M 1-2n
i °_3n (n+1)

M, 0 (1+0(1)) 21, ¥l €1,

This implies dist(xi(f ),S(f_)) = dist(x,,S(f_)), viL € 1. Note that
co °0 0 °0
dist(xi(fco),S(fco)) - dist(xo,s(fco)) # 0, vi € T. Thus putting f = fco, we

get f € S(xo) and

dern vy =z~




min dist(x, (£),5(£)) = dist(x),S(£) # 0

i=0,1,...,k
'
h which completes the proof. [
E?
i,;‘ :
1
:
5
}
i
]
)
4
{




5. MAIN RESULT

We are ready to prove the main result of this paper.

Iheorem 5.1
For any positive L, any sequence of linear information operators T o= {ﬂi],

any iteration without memory‘a = {wil € 3(?b, and any starting point %, €,
N(B,e,xo) =+, we<l, 3

Proof
d Suppose on the contrary that for some € < 1,'5,'6 and Xg» k = N(E,e,xo)
is finite. This means that

: (5.1) «~f € 3(x0), 310 € [1,k] : dist(x, ,S(f)) < ¢ dist(x.,S(£f))
; iy 0

where x, = ¢i(x0; ﬂi(f,xo)). Consider now the operator defined by
*
(5'2) ‘3 (f’xo) = [ml(f’xo) ’mz(f’xo)""rvzk(f’xo)}‘

*
Of course, M 1is a linear information operator in the sense of Definition (2.2).

Define functionals ¢: € @(m*), ;
Tx; X (E ;
(503) <pi(x0’ ( ’xo)) wi(xo’ i(f!xo))'

*
From Theorem 4.2 we know that for functionals Py there exists a polynomial fo,

£y € A(xy) , such that
(5.6) dist(xI, S(£)) = dist(xyS(E)) # 0, wi=1,2,....k,

* * * * *
where X, = xi(fo) = ¢i(xo; 2 (fo,xi)), i=1,2,...,k. Due to (5.3), xi(fo) = xi(fo).

From (5.1) there exists {

o io(fo) such that
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dist(xi ,S(fo)) sSe dist(xo,S(fo)) < dist(xo,s(fo))
. 0

which contradicts (5.4). Hence Theorem 5.1 is proven. [ ]

From Theorem 5.1 and (3.8) follows

Corollary 5.1

For any positive L, any sequence of linear information operators W = ['J!i},

any iteration without memory p = {(pi} € ¥(M, and any starting point x, € C,

conp(;),c,xo) 4+, Ve<l, [ ]
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6.1

6. MEMORY

In this section we briefly extend all previous definitions and results to
iterations with memory. Let H and J be the class of polynomials defined as in
Section 2. Llet m, m > 0, be an integer, and let Li :H X (Emﬂ - C be a func-

cioral which is linear with respect to f. Then the linear information operator

X = [LI’L ""’Ln] tH X ’I:m"'l - ¢n’ is defined as

2

(6.1) ‘Jl(f,xo,x_l,...,x_m) = [Ll(f,zl,zz,...,zml),Lz(f,zl,zz,...,z
)]

m-+2)""’

Ln(f,zl,zz, oo ,zm_‘__n

where 2z, = x

1 0°%2 = X yrcecsZng = X m and zj = §J.(z1,...,z Ll(f,z

1,22,...,zm_1),

)""’Lj-l(f’zl’ZZ""’zm-i-j-l)) for some functions &

mt+l’

LZ(f’zl’ZZ""’ZMZ

j,

j= m2,m3,...,n, Llet \lrn o be the class of all such information operators.
?

Let Tt = {'Ri} be a sequence of ‘Ri, 2y € 2 ,

; o' For distinct xo,:»t_l,...,x_‘n we

construct a sequence of approximations {xi} by the formula

(6.2) X, = ;pi(xo,x_l,...,x_m; mi(f,xo,x_l,...,x_m))

1+m-¢-ni -
where 9, = D _C C - Q are functionals, ¢, € § (R). Let now ¢ = {g,}
o i m i i
be a sequence of functionals D0 Py € @m(:ni). Then @ is called an iteration

with memory using R, o € Em(ﬁ) .
Let T = {'Ri'} be a sequence of linear information operators with memory,
511 € *ni,m’ Q= {cpi} € @, € be a positive number, and x,,x ,,--.,x__ be

given distinct points. For any £ € 9, define

(6.3) N = N(Dye,%p%_1,0eerx o)

as the minimal integer, if it exists, such that

S G 4t U . i dmafie a e e e o aBe
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6.2

(6.4) dist(xN,S(f)) L dist(xo,s(f)),

-and N = 4+ @ otherwise. Let comp(c-p,e.xo,x_l,...,x_m,f) be the cost of computing

Xy Let L, L > 0, be a given constant. Then

(6.5) N((-p,c,xo,x_l,...,x_m) & sup N(?p,e,xo,x_l,...,x_m,f)
fES(xO)

where S(xo) is defined by (3.6). Similarly, let

(6.6) comp(c-p,e,xo,x_l,...,x_m) & sup comp@,e,xo,x_l,...,x_m,f).

£€3(x)
As before, there exists a positive ¢ such that

(6.7) comp(?).c,xo.x_l,--.,x_m) ZcN(E,e.xo.xl,---,x_m). %,e,xo,x_l,...,x_m.

BY a technique similar to the proof of Theorem 5.1 it is possible to prove

Theorem 6.1
For any positive L, any m, m > 0, any sequence of linear information
operators with memory ?!-t, any iteration 3, C-P € Qm(','-t) and any distinct starting points

XgsX_poecesX e €
comp(?p,c,xo,x_l,...,x_m) - N((_p,c,xo,x_l,...,x_m) = 4o ye<l, 8

Remark 6.1
In practice one often wants to reduce a residual error, i.e., to find a point

X such that

(6.8) lf(x.k)l < clf(xo)l
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Priiftiagieea buathait . b A

for some ¢ < 1, Note that (6.8) does not imply that X is closer to a solution

a € S(f) than x For problem (6.8) we pose the same question:

0
What is the complexity of any iteration ?p using linear information

solving (6.8)?

It can be proven that the complexity of -(Ta is infinity even for a subclass of
3(x0). More precisely, let T be a finite dimensional linear operator which

maps H onto C°. Let Y ¢ C°. Define
N -
3(xgsThe) = {f € J(xp) : T(H) = c}.

For any iteration with memory ?p Gim(-ﬁ-l), any ¢ < 1, any X € €, and any
- - -
f € 3(x0,'r,c), define N' = N'(cp,e,c,xo,f) as the minimal integer, if it exists,

such that lf(xN,)I < elf(xo)l, and N' = 4+ « otherwise. Furthermore, let

— =3 -
N' @, 6,0,k = sup | N'(B,e,0,x0,0).
£€3(x,, T,0)

Then for any sequence of linear information operators with memory ‘:"I, any
- - -
o € Qm(‘ﬂ), any T, any nonzero c¢ € Cs, and any distinct starting points

XgoX_yareeesX € Q:, we have
- a
N' (‘Pse,cho) = 4o we<l,

In particular, this also holds for T(f) = f(xo), i.,e., for the class of all

complex polynomials from 3(x0) which have a fixed value at Xg» f(xo) =c #0,
We want to stress that Theorems 5.1 and 6.1 can also be proven for the class

-
3(x0,'1',c). The proof, however, is more complicated. 2




7. OPEN PROBLEMS

In this section we pose a number of open problems which are relevant to
the questions studied in this paper.

In Theorem 6.1 we prove that for any m = 0, any linear information
T - {?ti], mi € 'ni,m’ any iteration 5 = {cpi} € Em(ﬁ) and any integer k, there
exists a '"difficult" polynomial £, £ € S(xo), i.e., a polynomial which requires
at least k+l iterative steps to reduce the starting error dist(xo,S(f)). Let
P = P(M,p,k) be the set of all such difficult polynomials and let d = d(R,o,k)

be the minimal degree of such polynomials, i.e.,

d &f min deg f.

fep
Problem 1
Find 4 as a function of m, k, and nl,nz,...,nk. [ ]
It can be shown that
k
-
(7.1) d < (k+2) (2+ )4 n,) + ke
i=1

In general, this bound is not sharp. For instance, for a statiomary iteration,

(7.2) 4 s (D) (@p+D) + k.

By a stationary iteration we mean an iteration which constructs a sequence of

approximations by the formula

(7.3) X1 = q’l(xl’xi-l”"’xi-m; ‘J&(f,xi,xi.l,...,xi_m))

for some T, € *nl,m and @, € 6('.31).
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7.2

Theorem 6.1 states that the set P of "difficult” polynomials is nonempty,
It would also be interesting to investigate how "large' this set is. We

therefore pose

Problem 2
what proportion of polynomials from 3(x0) is "difficult"? [ ]
In this paper we have restricted ourselves to the class § of all complex

polynomials having only simple zeros. It is interesting to find for which classes

of problems the same negative result holds, i.e., for which classes of problems

the complexity of finding Xy using linear information is infinite. Does this

hold for the class of all real polynomials with all simple zeros? We summarize

this in

Problem 3

Characterize the classes of problems for which the complexity of finding Xy
is infinite, a

From our results it follows that to make the complexity of finding Xy finite,
it is necessary to use some nonlinear information about £f. An important open
problem is to characterize nonlinear information which yields not only finite but
relatively small complexity. On the other hand, there exists nonlinear information
for which the complexity is still infinity. For instance, if R(f,xo) =
G(Ll(f,zl),Lz(f,zz),...,Ln(f,zn)) where Ll""’Ln are, as always, linear fumc-
tionals with respect to f and G is an arbitrary operator (nonlinegr in general),
then it is obvious that for any sequence % of such iteration operators, the com-

plexity of finding Xy is infinite. We propose
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5,

3 Problem 4

(1) For a given nonincreasing function g, g:{0,1) - R, find informa-

tion @ and an iteration c-p using M such that the ;:omplexity

cmp(;,c,xo) < g(e) for any ¢ € [0,1),

(ii) Characterize the class of all information for which the complexity

of finding Xy is finite. ]
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